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Abstract
The multi-dimensional q-deformed bosonic Newton oscillator algebra
with U(d)-symmetry is considered. The high- and low-temperature
thermostatistical properties of a gas of the q-deformed bosonic Newton
oscillators are obtained in the thermodynamical limit. It is shown that the Bose–
Einstein condensation occurs in such a gas for values of the real deformation
parameter q smaller than 1. However, the ordinary boson gas results can be
recovered in the limit q = 1.

PACS numbers: 02.20.Uw, 05.30.Jp

1. Introduction

Quantum groups and quantum algebras are specific deformations of the classical Lie groups
and the Lie algebras with some deformation parameter q [1–8]. They have several applications
in theoretical physics such as noncommutative geometry [9–11] and exactly solvable statistical
models [12, 13].

Furthermore, statistical and thermodynamical consequences of studying q-deformed
physical systems have been extensively investigated in the literature [14–43]. Possible
connections between quantum groups and Tsallis non-extensive statistical mechanics have
been studied [44–46]. In the framework of q-bosons and similar operators called quons [47],
some considerable investigations have been carried out for obtaining a possible violation
of the Pauli exclusion principle [48] and also a possible relation to anyonic statistics
[49–53]. Moreover, several kinds of the one-dimensional q-deformed bosonic and fermionic
oscillator algebras have been recently used to study the generalized intermediate statistics
[54–60]. However, it was shown in [61–68] that the high- and low-temperature behaviours
of ‘the quantum group symmetric’ bosonic oscillator models depend radically on the real
deformation parameters.
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In this paper, we consider a different generalization of bosonic system, which is called
the multi-dimensional bosonic Newton oscillators. We obtain the high- and low-temperature
thermostatistical properties of a gas of the q-deformed bosonic Newton oscillators whose
particle algebra is invariant under the undeformed group U(d). In particular, we discuss
the effect of the deformation parameter q on the conditions under which the Bose–Einstein
condensation would occur.

The paper is organized as follows. In section 2, we review the basic algebraic and
representative properties of the multi-dimensional q-deformed bosonic Newton oscillators. In
section 3, we investigate the high- and low-temperature behaviours of the q-deformed bosonic
Newton oscillator gas with U(d)-symmetry. In this context, the distribution function and
other thermostatistical functions of the system are derived in terms of two distinct intervals of
values for the real deformation parameter q via the grand partition function of the system. In
section 4, we discuss the phenomena of Bose–Einstein condensation in the present U(d)-
invariant q-deformed boson model. In the last section, we give our conclusions.

2. The multi-dimensional bosonic Newton oscillators

In this section, the multi-dimensional q-deformed bosonic Newton oscillator algebra [69–72]
invariant under the undeformed group U(d) is presented. Hereafter, the q-deformed bosonic
Newton oscillators will be referred to as the BN-oscillators.

The U(d)-invariant algebra generated by the BN-oscillators ai together with their
corresponding creation operators a∗

i is defined by the following commutation relations [69]:

aia
∗
j − qa∗

j ai = qN̂δij , i, j = 1, 2, . . . , d,

aiN̂ = (N̂ + 1)ai, aiaj − ajai = 0,
(1)

where N̂ is the total boson number operator in d dimensions, and q is the real positive
deformation parameter. The BN-oscillator algebra in equation (1) has the following algebraic
and representative properties:

(1) From equation (1), the multi-dimensional undeformed bosonic oscillator algebra can be
obtained in the limit q = 1.

(2) Under the linear transformation

a′
i =

d∑
j=1

Tij aj , (2)

the relations given in equation (1) are invariant. In this equation, the matrix T ∈ U(d),
and it satisfies the unitarity condition T T̄ = 1, where the matrix T̄ is the adjoint matrix
of T . This property justifies the name Newton. We note that the same property can be
deduced for the fermionic version of the BN-oscillators [73, 74]. We should also mention
that the BN-oscillators algebra in equation (1) can be derived from the quantization of the
harmonic oscillator through its Newton equation and its invariance properties [69].

(3) The deformed bosonic annihilation operators in equation (1) have the representation [72]

ai = qN̂ ⊗ qN̂ ⊗ . . . ⊗ qN̂︸ ︷︷ ︸
(i−1)-terms

⊗ a ⊗ qN̂ ⊗ . . . ⊗ qN̂︸ ︷︷ ︸
(d−i)-terms

, (3)

where

aa∗ − q2a∗a = q2N̂ . (4)

2
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From this representation, we also have the following total deformed bosonic number
operator for d-dimensional case [69, 71, 72]:

d∑
i=1

a∗
i ai = [N̂], (5)

whose spectrum is given by

[n] = nqn−1, (6)

where n = n1 + n2 + · · · + nd. In order to obtain equations (1) and (6), from the above
representation, one should consider q1/2 instead of q.

(4) The BN-oscillators algebra in equation (1) can alternatively be written [71, 75] as

aia
∗
j − qa∗

j ai = H̃ δij , i, j = 1, 2, . . . , n,

aiaj = ajai, aiH̃ = qH̃ai,
(7)

where the Hermitian operator H̃ can be considered as qN̂ after the rescaling of the
operators ai and a∗

i . This algebraic form was recently used to construct a deformed Lie
superalgebra ospq1,q2(2n|2m,R) in [75].

(5) The quantum group invariant two-parameter deformed bosonic oscillator algebra called
the Fibonacci oscillator was recently introduced in [76]. The spectrum of the total
deformed bosonic number operator for such oscillators is defined by the generalized
Fibonacci basic integer:

[n] = q2n
1 − q2n

2

q2
1 − q2

2

, (8)

where q1, q2 are the real independent deformation parameters. In the limit q1 = q2 = q1/2,
the (q1, q2)-deformed boson algebra with SUq1/q2(n)-symmetry studied in [72, 76]
coincides with the present BN-oscillators algebra in equation (1). Therefore, we conclude
that the BN-oscillators algebra gives the same spectrum as in the bosonic Fibonacci
oscillator algebra in the limit q1 = q2 = q1/2.

(6) The multi-dimensional two-parameter (q1, q2)-oscillators with or without bosonic
degeneracy were studied in [77]. It was shown that the limit q1 = q2 of such two-
parameter deformed oscillators coincides and gives the BN-oscillators in equation (1). In
this context, the BN-oscillators have bosonic degeneracy for all values of the deformation
parameter q.

(7) The one-dimensional case of the BN-oscillators algebra in equation (1) deserves a special
attention. The one-dimensional BN-oscillator satisfies the following relations:

aa∗ − qa∗a = qN̂ , aN̂ = (N̂ + 1)a, (9)

which has another algebraic presentation from equation (7) as

aa∗ − qa∗a = H̃ , aH̃ = qH̃a. (10)

The deformed number operator for this oscillator can be calculated as

a∗a = N̂qN̂−1, (11)

whose spectrum is nqn−1, n = 0, 1, 2, . . . . Thus, one can construct the representations of
the operators a, a∗ in a Hilbert space spanned on normalized eigenstates |n〉 of the boson
number operator N̂ :

a|n〉 =
√

nqn−1|n − 1〉 with a|0〉 = 0,

a∗|n〉 =
√

(n + 1)qn|n + 1〉.
(12)

3
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From the infinite-dimensional matrix representations obtained via this equation, one can
calculate the limit q = 0. The non-trivial irreducible parts of the representations are

a =
(

0 1
0 0

)
, a∗ =

(
0 0
1 0

)
. (13)

One can see from

a2 = 0, a∗2 = 0,

aa∗ =
(

1 0
0 0

)
, a∗a =

(
0 0
0 1

)
,

(14)

that the remarkable commutation relation can be found as

aa∗ + a∗a = 1 or {a∗, a} = 1. (15)

Therefore, the q = 0 limit of the one-dimensional BN-oscillator algebra gives the one-
dimensional fermionic oscillator [71, 78]. However, the multi-dimensional BN-oscillators
in equation (1) presents a different generalized bosons with a spectrum given by deformed
integer eigenvalues in equation (6).

(8) The one-dimensional case of the BN-oscillators algebra in equation (9) is also different
from the following q-bosonic algebra [6–8, 79–81]:

cc∗ − qc∗c = q−N,

[N, c] = −c, [N, c∗] = c∗,
[c, c] = [c∗, c∗] = 0.

(16)

These operators obey the relations

c∗c = [N ], cc∗ = [N + 1], (17)

where the q-basic number is defined as

[x] = qx − q−x

q − q−1
. (18)

Recently, this algebra was used to study the thermostatistics of q-deformed bosons obeying
the interpolating statistics by Swamy [55, 57]. Furthermore, from the above discussions, the
one-dimensional algebra in equation (9) is different from the algebra

bb∗ − qb∗b = 1, 0 < q < 1,

[b,N ] = b, [b∗, N] = −b∗,
(19)

which was first introduced by Arik and Coon [82]. The number operator spectrum of this
bosonic algebra was defined by the relation

[n] = 1 − qn

1 − q
, (20)

which contrasts to the conclusions of the algebra in equations (1) and (6).
All of the properties mentioned above reveal that studying the multi-dimensional BN-

oscillators could give new interesting results in the framework of statistical mechanics. These
new results may play a role in many different phenomena such as superfluidity, thermodynamic
properties of the early universe.
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3. Thermostatistical properties of the BN-oscillators

In this section, we investigate the high- and low-temperature thermostatistical properties of
the BN-oscillators with U(d)-symmetry defined in equations (1) and (6). Similar to the
fermionic Newton oscillator gas model studied in [73], the system containing the BN-
oscillators constitutes essentially a ‘free’ q-deformed bosonic gas system, since the BN-
oscillators do not interact with each other. The reason behind this consideration is that we
do not have both a specific deformed commutation relation between bosonic annihilation
(or creation) operators and a quantum group symmetry structure in equation (1). In grand
canonical ensemble, we choose the Hamiltonian of such a free q-deformed bosonic Newton
oscillator gas as

Ĥ B =
∑

i

(εi − µ)N̂i, (21)

where εi is the kinetic energy of a particle in the state i, µ is the chemical potential which
is considered as a function of q, and N̂ i is the boson number operator relative to εi . Similar
Hamiltonians were also considered by several other researchers [17–25, 27–29, 34–43,
54–59, 73].

Now we derive the q-deformed Bose–Einstein distribution function. First we consider
the algebra in equation (1), and then follow the procedure proposed in [83–85]. Taking the
thermal averages of both sides in equation (1),

〈aia
∗
i 〉 + q〈a∗

i ai〉 = 〈qN̂ 〉, (22)

leads to the statistical distribution function [fi,q] for the BN-oscillators as

[fi,q] ≡ 〈a∗
i ai〉 = 〈qN̂ 〉

eβ(εi−µ) − q
. (23)

By means of equation (6), this can be rewritten as

[fi,q] = q

eβ(εi−µ) − q
. (24)

The same result can also be obtained by employing the principle of detailed balance [19, 20]
as follows:

[fi,q]

[fi,q + 1]
= exp{−β(εi − µ)}, (25)

where [fi,q +1] can be derived from the algebra in equations (1) and (6). We should emphasize
that the form of the q-deformed distribution function [fi,q] in equation (24) is different from
other studies in the literature [14–43, 54–60], since we used a different realization of the
multi-dimensional boson algebra in equation (1). The q-deformed distribution function [fi,q]
in equation (24) has the following properties:

(1) In the limit q = 1, [fi,q] will be the usual Bose–Einstein distribution.
(2) The distribution function [fi,q ] should be nonnegative. This gives the following constraints

on the q-deformed fugacity zq = exp(βµ) and the chemical potential µ:

zq �
{
q−1, µ � −kT ln q, (q � 1),

q, µ � kT ln q, (q � 1).
(26)

When we take the limit q = 1, this equation reduces to

z1 = z � 1 or µ = µ1 � 0, (27)

as in the case of an undeformed bosonic gas. Also, we note that the q-deformed fugacity
zq is independent of the dimension of the BN-oscillators.
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Using the q-deformed statistical distribution function in equation (24), one can find the
logarithm of the bosonic grand partition function as

ln ZB = −
∑

i

ln(1 − qzq e−βεi ), (28)

which gives all of the thermostatistical functions in terms of the real positive deformation
parameter q. Assuming a large volume and particle number, we can replace the summations
by integrals. However, we note that the �p = �0 case plays a special role in the ideal Bose gas
[86–88]. Since ln ZB diverges in the �p = �0 term as z → 1, we separately account for the term
�p = �0 as a second term in the following equation of state:

P

kT
= −4π

h3

∫ ∞

0
p2 dp ln

(
1 − qzq e−βp2/2m

) − 1

V
ln(1 − qzq). (29)

Similarly, the particle density for the BN-oscillators is

1

υ
= N

V
= 4π

h3

∫ ∞

0
p2 dp

q

(zq)−1 eβ p2/2m − q
+

1

V

q

(zq)−1 − q
. (30)

Equations (29) and (30) can be rewritten as

P

kT
= 1

λ3
g5/2(q, zq) − 1

V
ln(1 − qzq), (31)

1

υ
= 1

λ3
g3/2(q, zq) +

1

V

q

(zq)−1 − q
, (32)

where λ =
√

2πh̄2/mkT is the thermal wavelength. The generalized Bose–Einstein functions
g5/2(q, zq) and g3/2(q, zq) are defined as follows:

g5/2(q, zq) = − 4√
π

∫ ∞

0
x2 dx ln(1 − qzq e−x2

) =
∞∑
l=1

(qzq)
l

l5/2
, (33)

g3/2(q, zq) = 4√
π

∫ ∞

0

x2 dx

(qzq)−1 ex2 − 1
=

∞∑
l=1

(qzq)
l

l3/2
, (34)

where x2 = βp2/2m. These generalized functions reduce to the standard Bose–Einstein
functions gn(z) in the limit q = 1. They are also different from hn(z, q) in [55].

In figures 1 and 2, the q-deformed functions g3/2(q, zq) and g5/2(q, zq) are shown as a
function of z for different values of the deformation parameter q, respectively. As shown in
equation (26), in these figures, the upper bound of z is 1/q for q � 1, and q for q � 1. When
we compare with the q = 1 case in figures 1 and 2, the values of the q-deformed Bose–Einstein
functions g3/2(q, zq) and g5/2(q, zq) decrease for q < 1, while they increase for q > 1.

Equations (24) and (32) imply that 〈n0〉 is the average occupation number for the zero
momentum state,

〈n0〉 = qzq

1 − qzq

. (35)

This term contributes significantly to equation (32) if 〈n0〉/V is a finite number, i.e., if a
finite fraction of the BN-oscillators occupies the single level with �p = �0. This fact gives rise
to the famous phenomenon of Bose–Einstein condensation. In this context, one can rewrite
equation (32) as

λ3 〈n0〉
V

= λ3

υ
− g3/2(q, zq), (36)

6
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Figure 1. The q-deformed Bose–Einstein function g3/2(q, z) as a function of z for different values
of the deformation parameter q.

Figure 2. The q-deformed Bose–Einstein function g5/2(q, z) as a function of z for different values
of the deformation parameter q.

which implies (〈n0〉/V ) > 0, when the critical combination of the temperature and the specific
volume occurs such that the q-deformed fugacity zq will reach its maximum value given in
equation (26). Therefore, we obtain

λ3

υ
� g3/2(q, zq). (37)

7
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Figure 3. The ratio Tc(q)/Tc(1) of the q-deformed critical temperature Tc(q) and the undeformed
Tc(1) as a function of the deformation parameter q.

This phenomenon is referred to as the Bose–Einstein condensation. In the framework of the
constraints in equation (26), we consider the case q � 1 in the rest of the calculations of this
study. Since the function g3/2(q, zq) with q � 1 in equation (34) gives the same results as in
the case of an undeformed boson gas. Hence, the low-temperature behaviour of the present
BN-oscillators model is interesting only for values of the deformation parameter q smaller
than 1.

The critical temperature Tc(q) for the BN-oscillators gas can be found from equation (37)
as

Tc(q) = 2πh̄2/mk

[υg3/2(q, zq)]2/3
. (38)

Thus, from figure 1, the critical temperature for the BN-oscillators is much larger than the
critical temperature Tc(1) for an undeformed boson gas in the special region of the deformation
parameter q close to zero. Obviously, one can find a relation between the critical temperature
of the present BN-oscillators gas and of the undeformed boson gas:

Tc(q)

Tc(1)
=

(
2.61

g3/2(q, zq)

)2/3

. (39)

In figure 3, we show the plot of equation (39) as a function of the deformation parameter q for
the case q � 1.

The internal energy U of the BN-oscillators gas can be found by U = (−∂ ln ZB/∂β),
which leads to

U

V
= 3

2

kT

λ3
g5/2(q, zq). (40)

With the above results in mind, the specific heat of the BN-oscillators gas can be obtained
from CV = (∂U/∂T )V . For low temperatures, namely in the limit T < Tc(q), the specific

8
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Figure 4. The specific heat CV /Nk as a function of T/Tc(q) for values of the deformation
parameter q smaller than 1.

heat of our model is
CV

Nk
= 15

4

υ

λ3
g5/2(q, zq), (41)

which can be rewritten in terms of the critical temperature Tc(q) by means of equation (38) as

CV

Nk
= 15

4

g5/2(q, zq)

g3/2(q, zq)

(
T

Tc(q)

)3/2

. (42)

On the other hand, we have the following specific heat for the BN-oscillators gas in the limit
T > Tc(q):

CV

Nk
= 15

4

υ

λ3
g5/2(q, zq) − 9

4

g3/2(q, zq)

g1/2(q, zq)
, (43)

which can be approximated as

CV

Nk
≈ 3

2
+

3

4.25/2
g3/2(q, zq)

(
Tc(q)

T

)3/2

. (44)

From equations (42) and (44), we deduce the gap in the specific heat in the limit T = Tc(q):

�CV

Nk
≈

{
15

4

g5/2(q, zq)

g3/2(q, zq)
−

[
3

2
+

3

4.25/2
g3/2(q, zq)

]}
. (45)

In figure 4, we show the plot of the specific heat CV /Nk as a function of T/Tc(q) for values
of the deformation parameter q smaller than 1. In figure 5, we also show the plot of the gap
in specific heat �CV /Nk, using equation (45), as a function of the deformation parameter q
for the case q � 1.

On the other hand, the entropy for the BN-oscillators gas can be obtained from
S = (U − F)/T . For low temperatures, the entropy for our model is

S

Nk
= 5

2

υ

λ3
g5/2(q, zq), (46)

9
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Figure 5. The gap in the specific heat �CV /Nk at the critical temperature Tc(q) as a function of
the deformation parameter q.

and similarly, the entropy for high temperatures is
S

Nk
= 5

2

υ

λ3
g5/2(q, zq) − ln zq. (47)

From equations (46), (47) and (26), the jump of the entropy at T = Tc(q) can be obtained as
�S

V
= k

λ3
g3/2(q, zq) ln q, (48)

where the case q < 1 is considered. The entropy of the BN-oscillators gas gives the same
results as the entropy of an undeformed boson gas in the limit q = 1 [86–88]. We observe
from equation (48) that for q < 1, the entropy values of the BN-oscillators gas at the critical
point is different than those of an undeformed boson gas. The jump of the entropy of the
BN-oscillators gas at the critical point increases with the values of the deformation parameter
q up to a value q = 0.67.

By considering the above results, the effect of the deformation parameter q on the
thermostatistics of the BN-oscillators gas will be discussed in the following section.

4. Discussion

As shown in figure 4, the specific heat of the BN-oscillators gas shows a discontinuity at the
critical temperature. This means that the Bose–Einstein condensation in the BN-oscillators
gas is a second-order phase transition. Also, the specific heat of the BN-oscillators gas has a
λ-point transition behaviour which is not exhibited by an undeformed boson gas. This could
provide some implications in studies on superconductivity or superfluidity. An interesting
point is that when the deformation parameter q approaches zero, the discontinuity in the
specific heat of the system increases (figure 4). Conversely, it disappears in the limit q = 1,
showing an undeformed boson gas behaviour.

10
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Furthermore, the gap in the specific heat of the BN-oscillators gas at the condensation
temperature decreases with the values of the deformation parameter q up to the limit q = 1
(figure 5). Although, many studies in the literature [14–43] are devoted to the region q � 1,
our study is an example of a deformed boson system with a deformation parameter smaller than
1. It shows the Bose–Einstein condensation for low temperatures in the interval 0 < q < 1.

Also, the theoretical critical temperature for 4He, Tc ≈ 3.13 K [86–88], corresponds to a
q value of about 0.9. It is interesting to note that the same value q ≈ 0.9 fits very well the gap
in the specific heat of a dilute gas of rubidium atoms [89]. Such a result may be physically
important, since some recent studies similarly adduced a value of the deformation parameter
q. Hence, one might well view q-deformation as a phenomenological means of introducing
an extra parameter, ‘q’, to account for nonlinearity in the system. Such an approach was
considered in [90], where a value of q is found to fit the properties of a real (non-ideal) laser.

As a final discussion, we emphasize that the multi-dimensional BN-oscillator algebra [69]
is a newly developed algebraic structure, since it has not been fully examined in the past in the
literature. Moreover, we wish to outline some structural property of the algebra of the BN-
oscillators together with its fermionic version studied in [73]. We could consider the bosonic
and fermionic Newton oscillator algebras with U(d)-symmetry as a different manifestation of
the same structure:

aia
∗
j − κqa∗

j ai = qN̂δij , i, j = 1, 2, . . . , d,

aiaj − κajai = 0,
(49)

where κ is used to describe boson-like particles for κ = +1 and fermion-like particles for
κ = −1, respectively. Obviously, the undeformed bosonic and fermionic oscillator algebras
can be obtained in the limit q = 1. Even more interesting is the fact that the q-deformed
statistical distribution functions for both the present BN- and the FN-oscillator [73] gases can
be reconsidered as

[fi,q] = q

eβ(εi−µ) − κq
. (50)

In the following section, we will give some concluding remarks about the above discussions.

5. Conclusions

In this paper, we studied the algebraic and representative properties of the BN-oscillators.
The Hamiltonian of this system does not show invariance under a quantum group structure.
Hence, the system of the BN-oscillators constitutes essentially an example of non-interacting
multi-mode system of the q-deformed bosonic particles. The algebra of the BN-oscillators has
the following properties: It has U(d)-symmetry, and the deformation parameter q can have
values in the interval 0 < q < ∞.

Furthermore, we discussed the low- and high-temperature behaviours in a gas of the
BN-oscillators. Starting with a q-deformed Bose–Einstein distribution function, several
thermostatistical functions via the grand partition function of the system are calculated. Due to
the algebraic reasons originating from equations (24), (26), (33), and (34), we obtained such
thermostatistical functions in terms of the deformation parameter q for its specific interval
0 < q � 1. For instance, the average occupation number, the critical temperature, the entropy
are derived for low temperatures. Subsequently, the specific heat of the system is obtained
in the low- and high-temperature limits. We then focused on the effect of the deformation
parameter q on these results. We should emphasize that the values of these deformed functions
and thus all other thermostatistical functions will be more sensitive to those q values, which
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are small deviations of the deformation parameter q close to zero. However, the results for an
undeformed boson gas can be recovered in the limit q = 1.

As a final remark, our studies reveal that the bosonic and fermionic Newton oscillator
algebras in equations (49) and (50) may serve as a new candidate to study systems with
fractional statistics such as anyon-like particles. A parallel discussion is on possible
consequences of the bosonic and fermionic Newton oscillator algebras with the deformation
parameter q being a root of unity. We hope that detailed discussions on such problems will be
reported in future publications.
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